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Summary. Although membranes are often viewed as barriers to diffusing particles, in 
many cases their presence does not slow down diffusion. Investigations of the transit time 
(mean diffusion time) for cases where the source and the target of diffusing particles are 
separated by various arrangements of membranes reveal the following facts: (i) The 
transit time is composed of the sum of the times to diffuse each of the membrane and 
aqueous regions separately and terms representing the time spent at the vicinity of the 
interfaces between these regions. (ii) In cases of one dimensional diffusion between 

aqueous and membranal phases, the transit time is governed by the parameter fll/D,,/D,~ 
where D m and D w are the diffusion coefficients in the membrane and water, respectively, 
and fi is the membrane/water partition coefficient of the particles. While the former ratio 
depends mostly on the viscosities of the two phases, the latter parameter is very strongly 
dependent on the identity of the particles. The diffusion from water to the membrane is 

faster than from the membrane to water whenever 13 ]/-D,,/D~ > i. The opposite is true 
when this parameter is smaller than 1. (iii) In case of one dimensional transmembranal 

diffusion, the transit time shows a minimum when fil/D~/D w =1/1,~1/1~2 where l,< and 
I~2 are the net diffusion distances in the aqueous phases on both sides of the membrane. 
In this case, if the diffusion proceeds through pores in the membrane, 13 represents the 
fraction of membrane area that is occupied by the pores. 

The transit times for three dimensional diffusion into and from a spherical cell are 
also presented in a simple form. In addition, some of the relations between transit times 
and other measurable time parameters, such as the course of the decay of gradients and 
the time lag to establish steady states, are discussed briefly. 

The conclusions emerging from this analysis, together with the simple expressions for 
the transit times can make these investigation useful for the understanding of diffusion in 
systems containing natural or artificial membranes. 

Occasionally particles must diffuse to and through membranes if they 
are to reach their assigned target. These diffusion processes may take 
place while organisms perform their vital functions as well as within 
man-made nonliving systems. In many cases, however, the diffusional 
drift is too slow to transport particles at the required speed and the 
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facilitation of diffusion is needed. If we now want to be in a position to 
decide under what conditions does diffusion proceed fast enough, we 
must learn about the timing of diffusion in such systems. 

We can intuitively perceive that properties of the particles as well as 
the arrangement of membranes would influence the pace of diffusion. For 
example, it is reasonable to expect that the relative affinity of the 
particles to the membrane and aqueous phases would strongly affect 
diffusion times. Also, the diffusion coefficients and the net diffusion 
distances in each of these phases would govern the pace of diffusion. 

But let us first define what we refer to here as the diffusion time. We 
must recollect that diffusion proceeds by the random movements of 
particles in solution. Consequently, particles that leave the source tog- 
ether would not all reach the sink simultaneously. However, when we 
consider the timing of diffusion, it is sufficient in many cases to obtain 
the mean of these times of arrival ("first passage") to the sink. This mean 
time is denoted the t ransi t  time. 

It should be mentioned here that, although the subject of diffusion 
through membranes has been investigated for well over a century, transit 
times for these processes had never been calculated. The main reason for 
this lies in the extreme mathematical complexity which one encounters 
when attempting to obtain transit times by the formal method available. 
This is because this formal method requires the knowledge of solutions 
to the time-dependent diffusion equation and these solutions are dis- 
couragingly difficult or occasionally even impossible to obtain for the 
cases of diffusion in heterogeneous systems. 

In this paper, it is our purpose to introduce and investigate the 
properties of transit times in structures with membranes. Here the transit 
time is obtained by a simple straightforward approach. This approach is 
based on the fact that the transit time can be extracted directly from the 
behavior of the system at its steady state. 

The results obtained in this paper are presented in a simple form. 
This, we believe, would help make them better understood and hence 
readily usable by researchers who follow the pace of diffusion in struc- 
tures with membranes. The implications of the results presented here to 
the study of the strategies adopted by living organisms to minimize 
diffusion delays are discussed elsewhere (Hardt & Cone, 1979)1. 

If we now examine for a moment,  the time parameters measured in 
typical diffusion experiments, we immediately realize that the transit time 

1 Hardt, S.L., Cone, R.A, 1979. Diffusion in small structures (unpublished manu- 
script). 
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is not always the measured quantity. Occasionally, one observes experi- 
mentally other time parameters such as, for example, the time course of 
the decay of an initially prepared concentration gradient or the pace of 
approach of a system to its steady state. We must recollect, however, that 
all the transient concentration changes observed come about by the 
independent movements of single particles. Therefore, it is reasonable to 
expect that a close link exists between these times and the transit time. 
Fortunately, these links permit us to use the insight provided by our 
transit time analysis when examining other measured time parameters. 
We come back to this subject with some specific examples in the last 
section. 

We begin our presentation by introducing a few key facts about the 
relations between transit times and net diffusion distances for the cases of 
diffusion in one and in three dimensions. We believe that the understand- 
ing of these basic relations is essential to the study Of transit times in 
heterogeneous media. 

Dif fusion A d d s  Dis tances  N o t  Tzmes 

As it was first observed by Einstein (1956), the mean diffusion time z, 
for one dimensional diffusion does not bear a simple linear dependence 
on the diffusion distance l, but rather, it depends on the square of this 
distance, namely, 

z = 12/2D (1) 

where D is the diffusion coefficient. 
One of the straightforward outcomes of this relation is that if we now 

divide in our mind the distance 1 into two subdistances 11 and 12 (as is 
shown schematically in Fig. la), the transit time remains unchanged and 
equal to 

= (l~ + 12)2/2D = 12/2D + 12/2D + l~ lz /D.  (2) 

The first two terms in Eq. (2) can be easily identified as the transit times 
for diffusion in separate regions of length l~ and I z. The third term, 
however, is of special interest. It can be regarded as reflecting the fact 
that even after the particles have crossed the border between the two 
regions for the first time, their random movements can still bring them 
back into the first region and away from their target. Therefore we can 
say that the third term in Eq. (2) represents the contribution to the 
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Fig. 1. "Thought  experiments" designed to illustrate the special dependence of the transit 
t ime on the diffusion distance when the latter is divided into subregions. (a): The case of 
one-dimensional diffusion. (b): The case of three-dimensional diffusion from a source to a 

small surrounded sink 

transit t ime from these diffusional trajectories that cross the border  
region. We shall denote this term interference term. 

In the case of diffusion through membranes,  the distance between the 
source and the sink is naturally divided into subregions (layers of 
membranes  and aqueous solutions). However,  in that  case, since the 
subregions differ in their physical properties, they are distinguishable by 
the diffusing particles. But, as we shall see, even for this more  com- 
plicated case, the transit t ime retains the simple structure of Eq. (2), with 
the only difference being that  now the interference term depends on the 
relative affinity of the particles to the two phases. 

If we now consider the case of diffusion in three dimensions,  we 
would observe, in principle, the same behavior of transit times as we 
have seen demonst ra ted  by Eq. (2). For  example, in the case of diffusion 
from a source at a radius b 2 to a sur rounded sink of a radius a (Fig. lb), 
the transit t ime is given by (see Hardt  & Cone, 19792): 

z = [(b 2 - a)Z/2DJ (2b 2 + a)/3 a. (3) 

If we now divide the diffusion distance ( b 2 - a )  into two subregions of 
length ( b 2 - b l )  and (b l -a )  as is shown schematically in Fig. lb, the 
transit times for these two regions would be, respectively (using Eq. (3)), 

-c 1 = [(b 2 - bl)2/2DJ (2b 2 +bl)/3bl 
and 

-c2 = [(b 1 - a) 2/2 D] (2 b i + a)/3 a. 

2 S e e  footnote 1, p. 300. 
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Therefore, the transit t ime from the source to the sink, as given by 
Eq. (3), can be expressed in terms of the transit times for the subregions 

as 

z =z  1 + z  2 + ( b l - a ) ( b  3 -b3 ) /3ab~  D. (4) 

As may have been expected, the interference terms in this case do not  
assume the simple form found in Eq. (2). The reason for this lies in the 
special geometry effects presented in this transit t ime which emerges due 
to the arrangement  of the source and the sink. 

Another  case of interest here is the case of diffusion from a small 
source of radius  a to a surrounding sink at a radius b 2 (diffusion in the 
direction opposite to what  is shown in Fig. lb). For  this case, the transit 
t ime is given by (see Hardt  & Cone, 19793): 

"c = [(b 2 - a)2/2D~ �9 (2a + bz)/3 b a. (5) 

Upon  the division of the diffusion distance, one observes a behavior  
which is similar to what is expressed by Eq. (4). We shall come back to 
the properties of the three dimensional  diffusion when we investigate the 
transit times of t ransmembrana l  diffusion into and from a spherical cell. 

In the next section we shall in t roduce briefly the simple method  used 
to calculate transit times. Since this me thod  requires the knowledge of 
the behavior of the system at its steady state, we shall also introduce 
some of the essential features of steady states in cases where diffusion 
occurs either by part i t ioning into the membrane  or, alternatively, when it 

proceeds through pores. 

H o w  to Obtain the Transit 7~rne 

As was ment ioned  in the introduct ion,  diffusing particles that  leave 
the source together  do not  arrive at the sink simultaneously;  however, 
their arrival times can be described by a distr ibution funct ion f ( t ) .  Here 
we are mainly interested in the transit time, which is the mean of  the 
arrival times, and which is formally related to f ( t )  by 

~= ~ t f ( t ) d t .  (6) 
0 

The problem with this approach,  which is used in the literature, is the 
extreme difficulties that  one encounters when trying to obtain f ( t )  for all 

3 S e e  footnote 1, p. 300. 
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but the simplest diffusion problems. However, there is an alternative way 
to obtain the mean diffusion time without the need to know the 
distribution function. It can be shown that the transit time may be 
extracted directly from the behavior of the system at its steady state. 

A steady state in the system is attained when we allow the source to 
release particles continuously. In the steady state there is a constant flux 
of particles, F, that both enter through the source and leave through the 
sink. Consequently, the number of particles in the system, N, is a 
constant. It can be shown that this total number of particles in the 
system in cases where the concentration at the sink is zero equals the flux 
of particles into the system multiplied by their mean diffusion time from 
the source to the sink. Hence 

:N/F. (7) 

(For a proof and a discussion of this approach, see Hardt, 1979. A 
scheme of the proof is also introduced in Appendix I.) 

It must be clear that the transit time obtained by Eq. (7) reflects the 
behavior of a single diffusing particle, and that the steady-state con- 
centrations of particles are here only to permit the calculation of this 
single-particle-mean-diffusion-time. Moreover, since the movements of 
single particles are mutually independent, it can be anticipated that the 
behavior of a single particle can be deduced in principle from various 
other diffusion problems. 

Some Features of Steady-State Diffitsion through Membranes 

Equation (7) permits the calculation of transit times provided that we 
know the steady-state concentration profile for our particular problem. 
Therefore, we shall now discuss the process of steady-state diffusion 
through membranes and demonstrate how to obtain the concentration 
profile. Of course, this problem has been treated extensively in the 
literature. References to the available work can be found in Crank (1975). 

In the steady state, the flux of particles from the source and into the 
sink reaches a constant value. If we now assume that the diffusion 
process in systems such as the one shown in Fig. 2 is a one-dimensional 
process, we can state that the flux through the system is equal at every 
point along the distance from the source to the sink. The assumption 
that we have just made about the unidirectionality of the flux may not be 
valid, especially in cases where diffusion proceeds through pores in the 
membrane. We will discuss this point  later. 
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Fig .  2. A case of one-dimensional diffusion when the source and the sink are sparated by 
successive layers of the aqueous solution and the membrane. The diffusion coefficients of 
the particles in the two phases are D~ and Din, respectively. The partition coefficient 

membrane/water or the fraction of membrane area occupied by pores is/~ 

Obviously, the type of steady-state behavior that we are to observe 
depends strongly on the type of mechanism by which the diffusing 
particles penetrate into the membrane. One possible mechanism is that 
the particles diffuse in the membranes after dissolving into them. In this 
case the problem is strictly one dimensional and can be treated exactly 
(the same holds when diffusion is facilitated by diffusable carriers.) 
Another possibility for transmembranal diffusion is through pores in the 
membrane. In this case, even the steady-state problem is not always 
solvable exactly, and the type of approximation used would strongly 
depend on the distribution and the shapes of the pores. 

In the following, we shall analyze the steady-state behavior for these 
two cases. The results summarized here are used in the next sections to 
calculate the transit time. 

a) Dissolution in the Membrane 

In this case we assume that the particles penetrate into the mem- 
braneous phase by dissolving into it. For this mechanism, the affinity of 
the diffusing particles to the membrane, comparative to their affinity to 
the aqueous solution, is represented by the partition coefficient /~. This 
constant is equal to the ratio of the concentrations in the membrane and 
in the solution at the interface between these two phases, when a state 
of equilibrium or a steady-state has been attained. If we denote these 
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concentrat ions c m and %, respectively, then/~ = % / c  w. It is interesting to 
note that,  in the case of facilitated diffusion, in which the particles have 
to bind to their carrier molecule in order to diffuse in and across the 
membrane,  % in the definition of/~ may stand for the concentra t ion of 
bound  carrier molecules at the interface. 

The steady-state concentrat ion profile for this case of diffusion can be 
obtained in a simple straightforward manner.  For  example, in the one- 
dimensional  case represented by Fig. 2, the steady-state flux through each 
phase would equal (Fick's first law) DA el1 where A c is the concentrat ion 
drop across that  phase and l is the net diffusion distance in it. 

If  we now assign numbers  to the pairs of  water -membrane  layers 
starting from 1 at the source and reaching j at the sink, and if we further 
denote  by D w and D m the diffusion coefficients of the particles at the 
water and membrane  regions, we obtain for the flux the following 
relation 

F =D~,A,~(c o - c,~l)/l, ~ =DmAm(cml  - C r n z ) / l m  

(8) 
=D,~Aw(cw2 - Cw3)/lw = . . .  DmAm Cmj- 1/l,n 

where A~ and A m are the cross-sectional areas of the water and mem- 
brane phases, respectively, and c o is the concentrat ion at the source. We 
can now use the definition of the part i t ion coefficient and substitute 
everywhere 

c , ,=~c ,~  (9a) 

and also in our case of  dissolution in the membrane  

A w =Am. (9b) 

Equat ions (8) and (9) define the slope of the concentrat ion in each region 
and permit  the calculation of the concentrat ion function itself. 

Figure 3 demonstrates  a typical concentrat ion profile. In this figure 
we have chosen Dw/D m = 100, which is in the order of this parameter  for 
the case of biological membranes.  Also in this figure, l,~/I,~=lO. The 
particles in this case have/~ = 2, which means that  they dissolve twice as 
much  in membranes  than they dissolve in water (notice the twofold 
concentrat ion j u m p  at the interface). The relative slope of the con- 
centrat ion gradient in the two phases is, according to Eqs. (8) and (9), 
Dm/D~, which in our example, as shown by Fig. 3, is equal to 0.01. 

We can use a graphical presentat ion such as Fig. 3 or solve Eq. (8) to 
obtain explicitly the concentat ion function in the steady state. By in- 
tegrating this function over the distance between the source and the sink, 
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Fig. 3. The concentration profile in a case of steady-state diffusion through three 
successive water-membrane regions. In this case the particles penetrate into the mem- 
brane by dissolution. For the case drawn, they partition twice as well in the membrane 
than they do in water (fl =2), and hence one can observe "jumps" in the concentration at 
the interface. The ratio between the slopes of the gradients in the water and membrane 

region is governed by the diffusion coefficients and given by Dm/D,~ 

we ob ta in  that  the total  n u m b e r  of  part icles in the system is 

N=Aco(j/2){lw+flI.~+[lwI,.(DUfl-flDm)/j(lwD,. +lmDw/fi)]}. (10) 

The  flux in this case, as given by Eq. (8), is 

F = A  Co/j(1,dD w + Im/D m fi). (11) 

The  knowledge  of  these two pa rame te r s  now permi ts  ca lcula t ion  of  

the t ransi t  t ime for this diffusion process  which accord ing  to Eq. (7) is 

equal  s imply to N/F. 
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b) Diffusion through Pores 

If we imagine the process of diffusion in which particles cross the 
membranes through pores, it becomes immediately clear that the timing 
of this process should be influenced by the time it takes a particle to 
locate such pores when it approaches the membrane. 

It is helpful for this case of diffusion through pores, to think about 
each pore as surrounded by its "range of influence". By this range, we 
mean a region in the close vicinity of the pore in which it is extremely 
easy to find the pore by diffusion. It also should be mentioned that the 
range of influence can be clearly observed in a steady state as the region 
surrounding the pore in which the concentration is drastically reduced. It 
is interesting to notice that the range of influence of a small circular pore 
is in the order of its radius, while the range of influence of an elongated 
pore is in the order of its long linear dimension. Therefore, the influence 
of the latter can be much greater than that of a circular pore with the 
same cross-sectional area (see fuller discussion of this point in Hardt & 
Cone, 19794). 

There are several approximated treatments to solve the problem of 
diffusion through pores [see, for example, Prager & Frisch (1975) and 
Bell & Crank (1974); see also Crank (1975)]. However, we would adopt 
here the case where the ranges of the influence of adjacent pores interfere 
to the extent that in the steady state the flux is essentially undirectional. 
Hence to this end, no entrance or exit effects of the pore should be 
considered. This treatment is valid in cases where the pores are located a 
few large diameters apart. It should be also mentioned here that if one 
takes the opposite extreme and assumes the entrance and exit effects to 
be so marked as to make the diffusion flux nonzero only at limited 
portions of the aqueous phase, one does not get a much different result 
for the transit time than we get with our approximation. (These two 
approximations for the steady-state flux are denoted by Bell and Crank 
(1974), as the series-parallel and parallel-series approximations. Their 
degree of accuracy for the case of two-dimensional diffusion was in- 
vestigated numerically by these authors. See also Crank (1975), pp. 281- 
285.) 

Now, if we take the reasonable assumption of the undirectionality of 
the flux, we get for this flux the same expression as given in Eq. (8), only 
this time the cross-sectional area is not equal in the two regions. Also D m 
represents in this case the diffusion coefficient in the pore and may or 

* S e e  footnote 1, p. 300. 
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Fig. 4. The concentration profile in a case of steady-state diffusion through three 
successive water-membrane regions. The particles are assumed to make their way across 
the membrane by diffusing through pores. The concentration drawn in the membrane 
region is the concentration within the pores. If we were to draw the averaged con- 
centration in the membrane region, it would assume "jumps" similar to those shown in 

Fig. 3. Here p denotes the fraction area occupied by the pores 

may not equal Dw, depending on the size and internal properties of the 

pore as experienced by the diffusing particles. 
If we define for this case 1~ as Am/A ~ and in addition use the fact that 

at the interface the concentrations near the pore are equal from both 

sides ("partition coefficient" of 1), we can obtain the steady-state flux 

from Eq. (8). The steady-state concentration profile will typically look 

like what is shown in Fig. 4. In this figure the concentration in the 
membrane region is the actual concentration in the pores. The number of 

particles and the flux for this case will assume a form identical to the one 

obtained in the previous case, as shown by Eqs. (10) and (11). 
With the above analysis we have concluded the part of the paper 

dealing with the general background necessary to calculate the mean 

diffusion times to and through membranes. 
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Diffusion between Water and Membrane Regions 

We will now use the relations derived in the previous section to 
obtain the transit time for the simple arrangement of a source and a sink 
which are separated by a single pair of aqueous and membrane  phases. 
This case is shown schematically in Fig. 5. 

By substituting j = l  in Eqs. (10) and (11), we obtain the steady-state 
number  of particles and flux for this case. Now, if we take the ratio 
between these two quantities, as is suggested by Eq. (7), we obtain the 
transit time for this case as given by 

_ 2 2 I z -- l U 2 D w J F  I , . /2D m -F(1 w lm/ D~D~wD~) (1~ ~ ) -  (12) 

The first two terms in Eq. (12) are easily recognized as the transit 
times to diffuse across the water and the membrane  phases, respectively. 
The third term, however, contains properties of both phases. As we have 
demonstrated in Eq. (2), the origin of such a term in the transit time are 
those diffusional trajectories that cross the interface between the two 
diffusion subregions. We have factored out this third term into two 
groups of parameters for a special reason. As we shall see in the next 

source~ target 
r~. 

%" 

Fig. 5. Diffusion across a water-membrane interface. As is concluded in the text, the 
direction in which the particles have to cross the interface to reach the sink may 

significantly influence the transit time 
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section, the parameter fll/D--~/D~-~ always appears in the transit time 
and has a significant meaning. 

If we now calculate the transit time for diffusion in the case where the 
source is located in the membrane and the sink is in the water, we clearly 
obtain a different transit time. This transit time can be calculated simply 
by interchanging the parameters of the two phases in Eq. (12). Alter- 
natively, this transit time for the reverse diffusion can be obtained by 
calculating for this new arrangement the number of particles and the flux 
in the steady-state. While the latter is the same as in the previous case, 
the former quantity assumes a different value and hence yields a transit 
time different than the one given in Eq. (12). 

The transit time for the diffusion in a direction reversed to that 
shown in Fig. 5 is then 

12 12 z = m/2D m + w/2Dw +(lm Iw/ D]/D~mD~)(fl D~~/D~) (13) 

Equations (12) and (13) can be very helpful if one wants fast diffusion 
and hence wonders in what phase to locate the sink. These relations 

clearly suggest that the parameter ~ ] ~ / D ~  is the key to the answer. If 
it is greater than 1, Eq. (12) yields a shorter transit time than Eq. (13). 
The opposite holds in the case where this parameter assumes values 
smaller than 1. Hence, since D~/D m is on the order of 100 for biological 
membranes, this observation suggests that for particles with partition 
coefficients greater than 10, delays for diffusion from water to the 
membrane can be significantly shorter than delays for diffusion in the 
opposite direction. 

The origin of the assymetry in transit times across an interface lies in 
the random nature of the diffusive movements. Once reaching the 
boundary between the two phases, the particles tend to spend more time 
in the phase to which they have a higher affinity. Now, if the sink is 
located in that phase, its probability to be found by the particles there is 
much higher than if it is located in the unfavorable phase. 

We can further conclude from Eqs. (12) and (13) that in certain cases 
transit times given by these equations can be significantly shorter than 
the transit time for the same net distance in homogeneous media. This 
conclusion can be based intuitively on the same reasonings as above. If 
in the homogeneous case the particles diffuse without special preference 
to any of the subregions, here they prefer the high affinity phase. As a 
result in cases where the sink is located in this phase, it may be found 
faster than in cases where the medium is homogeneous. 
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Transmembranal Diffusion between Two Aqueous Solutions 

In the previous section we established the main features of the transit 
time for diffusion in the interface region. With this knowledge in hand, 

we can now easily perceive the nature of transit times in more com- 
plicated structures. In this section we treat the case of t ransmembranal  

diffusion. This case is of great importance both for interpreting diffusion 

experiments performed on cells or vesicles and for understanding trans- 
port  problems encountered by living organisms. We will examine the 

transit times for the cases shown schematically in Fig. 6. The details of 
the solution are essentially the same as in the previous section and 

therefore will be stated only briefly. 

Case a: A Transmembranal Diffusion in One Dimension 

The transit time for this case (see Fig. 6a) can be obtained in the 

following way. First we write the equations for equal flux in the three 

regions. This yields an equation similar to Eq. (8). F rom that we obtain 
the number of particles and the flux as 

N = (Co/2) {lw 1 [,8 Dr.(l~ + 21.,2) + 2D.,lm] 

+ I m fi(Ow Ir. + 2D m fi lw2 ) + lg2 O~ fi}/7 

where 

F = DwD m fi Co~ 7 

~ w I m +Dm fi(l,~ + 1,~2). 

(14a) 

(14b) 

Fig. 6. Transmembranal diffusion in one and three dimensions. In these cases the source 
and the sink are both located in water and are separated by a membrane. The case where 
the source and the sink are in membranes and are separated by a layer of water can be 
easily obtained by interchanging the parameters for these regions in the equations in the 

text 
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Using Eq. (7) we obtain for the transit time 

" 2  2 r = 121/2D~ + tm/2D ~ + 1~2/2D w 

+z l l /Dmp+I l 2 /Dw+lw  lw2/D, . (15) 

Upon examining each of the terms in Eq. (15) we can easily identify 
the first three terms as the transit times for diffusion in each of the 
separate subregions. The last three terms, however, are the interference 
terms. 

It is of interest to observe the conditions under which the transit time 
in Eq. (15) exhibits a minimum. This condition can be derived by 
differentiating Eq. (15) with respect to ft. This yields that the minimal 
transit time is attained when 

fi2(D.,/Dw) =(lwl/lw2). (16) 

Notice that the square root of the term on the left is the same expression 
that appears in the interference term of Eq. (13). 

If we want to possess an intuitive insight into the process of diffusion 
through membrane, we must be able to establish what the condition 
represented by Eq. (16) actually means in terms of the behavior of single 
diffusing particles. As we shall see in the next section, this very same 
condition for minimum in the transit time also holds for diffusion 
through arrangements of successive membranes. 

The meaning behind Eq. (16) may become apparent if we recollect 
what has been said in previous sections about the origin of the in- 
terference terms present in the transit time. As has been stated, the 
essence of these additional terms is to add a delay to the diffusing 
particles. This delay comes about because even though the particles 
crossed the boundary between two regions, they can still diffuse back to 
their original starting point away from their target. 

With this picture in mind, we can now examine the first two in- 
terference terms in Eq. (15). The first term, lwl tm/D,,fi, represents the 
diffusional interference between the source aqueous region and the 
membrane. The second term, l,,, l~ z fl/D w represents the interference be- 
tween the membrane and the sink aqueous region. If we now compare 
these two terms to the condition stated in Equation (16), we immediately 
realize that the latter implies the equality of the former. To put it in 
other words, the minimal transit time is attained when 

lwl lm/Dm fi =lm lw 2 fi/D~. 



314 S.L. Ha rd t  

We are now in a posit ion to unders tand what  Eq. (16) states. It says 
that the fastest diffusion occurs when the delays int roduced by the 
interference terms at the two interfaces are equal. What  this in fact 
implies is that, in order to achieve a state of minimal  diffusion delays, the 
diffusing particles should not prefer one phase over the other in terms of 
the amount  of t ime they spend in the vicinity of the different boundaries.  

One can further investigate the value that  fi should assume in order 
to make  negligibly small the first interference terms discussed above. 
Such a condit ion can easily be achieved in cases where I,, is much  smaller 
than I~1 or 1,~ 2, as is the case if the membrane  is a biological membrane.  
This and other condit ions relevant to the unders tanding of the design of 
biological diffusion systems are discussed elsewhere (see Hardt  & Cone, 
19795). 

We shall now investigate the transit t ime for diffusion to and from a 
spherical cell as shown in Fig. 6b and c. The transit times for these three 
dimensional  diffusion processes assume a slightly more  complicated form 
than in the one-dimensional  case; however, it retains the latter general 
structure. 

Case b: Transmembranal Diffusion from a Spherical cell 

The case of interest is illustrated in Fig. 6b where the system dimen- 
sions are also specified. 

To obtain the transit time, we have, as before, to obtain the steady- 
state parameters.  The details of the calculation for this case and for the 
following one (Fig. 6c) are given in Appendix II. 

The resulting transit t ime emerging from the analysis is given as 

-c = [(b 3 - b 2 ) 2 / 6 D J  (2b z + b3)/b 3 + [(b 2 - b~)Z/6D,,l (2b 1 + b2)/b 2 

+ [(b~ - a)2/6Dw] (2a + b ~)/b~ 

+ l-(bl - a ) ( b 3 -  ba)/6D~] [(bl + a) 2 + bZ~ + a2]/ba b 3 (17) 

+ [fi(b 3 - b2)(b 2 - b~)/6D~] [(bz + b2) 2 + b~ + b2]/b~ b 2 

+ [(b 2-b~)(b l  - a ) / 6 ~ D J  [(b~ + a) 2 +b~ + a2]/bt b 2. 

The first three terms represent the transit t ime to diffuse across each 
phase separately (compare Eq. (5)). The last three terms represent here 
again the diffusional interference between the regions. Here these terms 

5 See footnote 1, p. 300. 
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assume a more complicated structure because of the geometry factors 
involved. It can be easily perceived that the three-dimensional transit 

time given by Eq. (17) is easily reduced to the one-dimensional case (as 
given by Eq. (15)) in cases where the curvature of the surfaces is 

negligible. This happens when (b 1 - a ) ~ a ,  (b 2 - b ~ ) ~ b  1 and (b 3 - b 2 ) ~ b  2. 

Case c: Transmembranal Diffusion into a Spherical Cell 

This case is shown schematically in Fig. 6c. The transit time is again 
of the same general structure as in Eq. (17) and is given by (see Appendix H 
for details) 

[(b 3 - bz)2/6D,~] (2b 3 + b2)/b 2 + [(b z - bO2/6Dm] (2b 2 + b~)/b~ 

+ [(b 1 - a)2/6Dw] (2b 1 + a)/a 

+ [(b 1 -a)(ba -be)/6Dw] [(b~ + a) 2 +b 2 +a2]/b2 b 3 

+ [fl(b 3 - b2)(b 2 - hO/6D,J [(b 2 + b~) 2 + h~ + b~]/b~b2 

+ [-(b 2 - b~) 2 (b I - a)/6fl D,.] [(b~ + a) 2 + b~ + a2]/bl b 2. 

(18) 

As in the previous cases, the first three terms in Eq. (18) represent the 
transit times for the three diffusion regions (compare Eq. (3)). This three- 
dimensional transit time given in Eq. (18) reduces to the one-dimensional 
one whenever the curvature of the surface is negligibly small. 

It is of interest to note that in cases where b 3 is much larger than b 2, 
b 1 and a, the diffusing particles view the cell as a small target and the 
actual process of penetration through the membrane  can be negligible, 
provided that fl is on the order of unity. In this particular case the transit 
time reduces to 

"c = [bZ/2Dw] [2b3/3b2] 

which is the transit time to locate a small target of radius b 2 by diffusing 
from a distance b 3. 

Diffusion through Successive Membranes 

After the observation we have made in previous sections, the de- 
rivation and the understanding of transit times for the case of diffusion 
through successive membranes becomes almost a trivial matter. We have 

encountered the parameter  / 3 ~ , [  representing surface properties 
and understood the condition for minimal diffusion delays for transmem- 
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branal diffusion. Now we shall see how these facts are nicely confirmed 
by the case investigated in this section. 

We shall consider here a case of diffusion through couples of water- 
membrane layers as shown by Fig. 2. The transit time can be easily 
obtained for this case by dividing the number of particles at a steady state 
by the flux. These two steady-state parameters for our case are given by 
Eqs. (10) and (11), and the resulting transit time is 

r = j  2 . 2  D 2 I. . /21~.,D.. ~1~/2 w + Im/2 D ~ + l m 

[(1 - l/j)fiD]/~m/D ~ +(1 + 1/ j l / f iD~/D~]} .  (19) 

Note the essential identity between this equation and Eq. (12) for the 
case j = 1. 

We shall investigate -c for the case where j >> 1. In this case -c assumes 
the form 

z = j 2 f  2 2 I , ~ l m / Z D ~ D ~ [ f l ~ + l / f l ~ ] }  (20) ~1~/2D,. + l,,,/2Dm + 

and has a minimum when 
fi DI/~/D~ = 1. (21) 

This condition for a minimum is identical to the condition formulated by 
Eq. (16) since here we have t,~l=l,~2=l ~. Hence, the meaning of this 
condition for minimal diffusion delays is identical to what is discussed in 
connection with Eq. (16). 

Doubtlessly, there is a wealth of conclusions that one can deduce 
from Eq. (20) concerning aspects of diffusional transport in living or- 
ganisms, but this is left to a separate paper (see Hardt & Cone, 19796). 

Since our original attempt has been to present and investigate the 
transit times for systems with membranes and, in addition, to make the 
conclusion drawn also useful for analyzing data usually obtained in 
diffusion experiments, in the following and last section we introduce 
some remarks which may turn out to be useful in this regard. 

Some Relations between Transit Times and 
other Measurable Times for Diffusion 

The theoretical observations obtained by our analysis can be applied 
to various real experimental observations. For example, Eqs. (15) or (19) 
can serve to clarify the nature of the observed deviations from Collander 

6 S e e  footnote 1, p. 300. 
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plots in measurements of nonelectrolytic permeability in epithelia cells 
(Hingson & Diamond, 1972). Also, Eq. (20) provides a means to obtain 
"geometry factors" for measurements of diffusion times in media with 
irregularly shaped boundaries. An example of such measurement is that 
of the lateral diffusion time of rhodopsin in the photoreceptor disc 
membrane (Poo & Cone, 1974). For this particular experimental obser- 
vation, Eq. (20) yields a "geometry factor" (i.e., a ratio between -c with 
and without the boundary irregularities) of ~ 2 - 3 ,  which is similar in 
value to that obtained by the above authors, after performing analogue 
heat flow measurements. (For the calculation here, the values /3-~0.05 
-0 .1 ,  Dm=Dw and lw- ~ 10 lm were taken.)A third example of experimen- 
tal systems to which the previously derived relations may be useful is 
that where the diffusion of growth factors into cells is considered (e.g., 
Whittenberger & Glaser, 1978). Here parameters such as the thickness of 
the unstirred layer may greatly affect diffusion times, and this possible 
effect can well be estimated by Eqs. (15) or (18). 

It is our purpose in this section to briefly demonstrate how the transit 
time may be related to measured time courses in some typical diffusion 
experiments. Three processes are analyzed here: (i) The decay of con- 
centration gradients in systems containing sinks; (ii) the equilibration of 
concentration gradients in closed systems; and (iii) the establishment of a 
steady-state gradient in a system with zero initial concentration. We 
believe that, although partly qualitative, this analysis is important, 
especially since it allows us to practice in real experiments the conclusions 
and the insight acquired by our basic investigation on transit times. 

a) The Decay of Gradients into Sinks 

We will consider here the diffusion of particles into sinks in cases 
where these particles initially participate in a concentration gradient. 
This diffusion problem differs from what we have analyzed before in that 
here the particles do not all diffuse the same net distance to the sink, but 
rather possess different "release" points as dictated by the initial con- 
centration gradient. 

We will address ourselves to the problem of finding the mean lifetime 
of particles in the system following the introduction of the sink. We can 
immediately say that this mean lifetime equals the transit time in the case 
of one release point (a 3 function concentration gradient). 
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For simplicity of presentation, we treat here a case of one-dimen- 
sional diffusion. The treatments for two and three-dimensional diffusion 
can, however, be obtained in an identical manner. 

Consider a system in which a one-dimensional concentration gradient 
of diffusing particles exists. This concentration is represented by c(x) 
which measures the concentration as a function of the distance from the 
origin, and the origin in this case is taken as an impermeable boundary.  

Suppose now that at time t = 0  a sink is introduced into the system 
and is located at distance b from the origin. We want to derive the 
average time it takes particles in the region between x---0 and x =b  to 
find the sink. 

To derive this mean lifetime, we must know the transit time for 
diffusion from a point x o between 0 and b to the sink at b. This transit 
time will then be weighted according to the concentration function 
(which reports at each point x 0 how many particles start their diffusion 
from that point). 

The transit time from a point x 0 to the sink is (see Hardt  & Cone, 
1979 7) 

-c(x 0) = (b 2 - x2)/2D. (22) 

Note  that for a release at x 0 =0,  Eq. (22) gives the Einstein relation (Eq. 
(1)) and for x0 =b  (release at the sink) the transit time is obviously equal 

to 0. 
The mean lifetime for particles in a concentration gradient c(x) is 

where 

b b 

= (1/N) ~ z(x)c(x)dx = (1/N) ~ [(b 2 - xa)/2D]c(x)dx 
0 0 

b 

N = c(x)  ax .  
0 

(23) 

For  the case of an initially uniform concentration, c(x)=constant ,  
and from Eq. (23) "c=bZ/3D. For the case of a linear concentration 
gradient c(x)= 1-x/b, Eq. (23) yields -c =b2/2.4D. 

b) The Relation between Mean Lifetimes and the Transiem Behavior 

Formally, the transient behavior of a decaying diffusion gradient can 
be described as an infinite sum of decay modes (see, for example, Crank, 

v S e e  footnote  1, p. 300. 



Diffusional Transport, Transit Times 319 

1975). For the case of one dimensional diffusion, the behavior in time 
and space can be expressed as 

c(x, t) = ~ bn(x ) e x p ( -  t/G ). (24) 
n = 0  

It can be easily shown that, since the rate at which particles evacuate the 
system through the sink determines how many particles are still left in it, 
the mean life time of the particles after the introduction of the sink is 
simply (see Adam & Delbruck (1968) for the derivation). 

= ( 2 5 )  
n = O  n=0 

b 

where B is related to bn(x ) of Eq. (24) by B,=~b~(x)dx. 
0 

Equation (25) suggests that the mean lifetime is in fact a weighted 
average of the modes of decay z n of Eq. (24). Moreover, Eq. (25) implies 
that in cases where one r n dominates Eq. (25), the mean lifetime of the 
particles would be equal to that mode. 

Indeed, what one finds in many cases [see Adam & Delbruck (1968) 
for the treatment of the transient behavior for two and three-dimensional 
diffusion, and Meyer & Kostin (1976) for the treatment of transients in 
diffusion through membrane] is that the mean lifetime in fact equals the 
largest (slowest) mode of decay. We can, at this point, say that the 
processes of diffusion in which one mode of Eq. (24) dominates is mostly 
those in which diffusion to the sink is restricted. For instance, this 
behavior is not found for most one-dimensional processes in homo- 
genous media. Clearly the last remark is basically intuitive, and its 
establishment needs further investigation. 

c) The Timelag and the Transient Time 

The timelag is a parameter that has proven useful in measuring 
various diffusion parameters in nonhomogeneous systems [see Ash, 
Barrer & Plainer (1965) and Crank (1975), p. 222]. 

Here we wish to emphasize how the timelag can be related to the 
transit time. We base our claim on the formal definition of the timelag 
which states that for the case of a system which is empty of diffusing 
particles at time 0, the steady state will be established after a time period 
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L, which is given for a case of one-dimensional diffusion by 

b 

L = (lib F) ~ x c(x) dx (26) 
0 

where b is the separation between the source and the sink, F is the 
steady-state flux and c(x) is the concentration function at the steady 

state. 
Using the definition of the transit time by Eq. (7), it can be easily 

shown that the timelag of Eq. (26) is just 

b 

r ='c ~ (x/b)(c(x)/N) dx. (27) 
0 

We can conclude from Eq. (27) that the timelag is equal to the transit 
time multiplied by a reduced distance parameter. The existence of such a 
parameter  is expected intuitively since, to establish a steady-state con- 
centration, c(x), not all the particles must diffuse the distance b. A 
detailed account the special form of this distance parameter  as well as a 
further investigation on the relation between the transit time and various 
measurable time parameter  will be given elsewhere. 

Conclusion 

We have attempted in this paper to provide an analysis of the 
peculiar properties of the pace of diffusion in systems containing mem- 
branes. The basic features of diffusion emerging from our investigation 
may help strengthen our intuition about this rather old, but yet not so 
fully understood, transport process. 

Part of this work was done while at the Department of Biophysics, The Johns 
Hopkins University, Baltimore, Maryland, and supported by grants from the NIH to Dr. 
R.A. Cone. 

I gratefully thank Richard A. Cone for many valuable discussions. I also thank Lee 
A. Segel for his encouraging remarks. 

Appendix I. 

Here we shall introduce the scheme of the proof of Eq. (7). A detailed 
discussion of this matter  can be found in Hardt  (1979). We wish to show 
that the transit time obtained from the steady-state parameters N and F 
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is identical to that obtained by averaging the "first passage" times of 
individual particles to the sink. To formulate this claim mathematically 

N/F = ~ tf(O dt 
0 

(see text for definitions of parameters). 
The proof is straightforward if we proceed along the following line of 

thought. In the steady state, at every time, there are N particles in the 
system. We know, however, that those particles present at any particular 
time, e.g., t = 0, will eventually evacuate the system through the sink and 
be substituted by new particles that enter continuously through the 
source. If we try to formulate this last observation, we shall obtain the 
desired proof for the above relation. 

The number of particles that leave the system at time t but entered at 
t 

times later than t = 0  is F~f(T)dT. Therefore, to obtain the number of 
0 

particles that were already present in the system at t = 0 and leave at time 
t, we subtract the above number from the total number of leaving 

particles'Hencen~ 
we sum the number of particles that leave at t and were present at 0 over 
all t, we should obtain N. Integrating this relation by parts and using the 
fundamental features of the Brownian movements which guarantee that 
t 

~f(T)dT=l as t ~ o c  and that this integral approaches 1 faster that t 
0 

approaches oo (e.g., Karlin & Taylor, 1975), one obtains N=F tf(t)dt. 
0 

Now, since in the case of free diffusion the movements of individual 
particles are mutually independent (Einstein, 1956), the same distribution 
function f(t) that describes the behavior observed in a steady state is also 
obeyed in general during nonsteady-state processes (and in particular 
during the process of diffusion from an instantaneous source, which is used 
to formally define ~). With these theoretical observations, our claim is 
proven. 

Appendix II. 

Here we shall show how to obtain the steady-state flux and number 
of particles for cases of three-dimensional diffusion from and into a 
spherical cell. These two cases are shown schematically in Fig. 6b and c. 
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1. Transmembra l  Di f fus ion f r o m  a Spher ica l  Cel l  

In the steady for this case (Fig. 6b), the equality of the flux in every 
subregion dictates [see  Crank (1975), pp. 267] 

F = 4rcD~ a b l ( c  o - c l ) / ( b  1 - a )  = 4 r e D  m b 1 b 2 f i ( c  1 - c 2 ) / ( b  2 - b l )  

= 4rcD~ b 2 b 3 c 2 / ( b  3 - b2) (A 1) 

where c o is the concentration at the source and c~ and c 2 the con- 
centrations in the aqueous solution at the two interfaces. F rom Eq. (A1) 
we obtain 

F = 4rcDwD m a b 1 b 2 b 3 c o/[a b l(b 3 --  b2) riD m 

+ a b3(b 2 - b ~)D~ + b 2 b3(b ~ - a) f l D J .  
(a2) 

To obtain the number of particles, we have to obtain c~ and c 2 from 
Eq. (A 1) and then integrate the concentration function over the volume. 

2. T r a n s m e m b r a l  Di f fus ion  into a Spher i ca l  Cel l  

In this case (Fig. 6c) the equality for the flux yields 

F = 4rcD~ b 3 b2(c o - c 1)/(b 3 - b2) = 4reD m b z b l  f l (ct  - c2)/(b 2 - b 1) 

=4rrD w b 1 a c2/(b 1 - a ) .  (A3) 

Here c 1 and c 2 are the concentrations in the aqueous phases at the 
interface. (The first interface is the one closest to the source.) This 
condition yields for the flux the same expression as given by Eq. (A2). 
The number  of particles in this case is again obtained by deriving c~ and 
c 2 from Eq. (A3) and integrating the concentration function over the 
volume. Obviously in this case N assumes a value different from that in 
the previous case. 
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